top of page

Hurricane

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain. Depending on its location and strength, a tropical cyclone is referred to by names such as hurricane (/ˈhʌrᵻkən/ or /ˈhʌrᵻkeɪn/[1][2][3]), typhoon /taɪˈfuːn/tropical storm, cyclonic storm, tropical depression, and simply cyclone.[4] A hurricane is a storm that occurs in the Atlantic Ocean and northeastern Pacific Ocean, a typhoon occurs in the northwestern Pacific Ocean, and a cyclone occurs in the south Pacific or Indian Ocean.[4]

Tropical cyclones typically form over large bodies of relatively warm water. They derive their energy through the evaporation of water from the ocean surface, which ultimately recondenses into clouds and rain when moist air rises and cools to saturation. This energy source differs from that of mid-latitude cyclonic storms, such as nor'easters and European windstorms, which are fueled primarily by horizontal temperature contrasts. The strong rotating winds of a tropical cyclone are a result of the conservation of angular momentum imparted by the Earth's rotation as air flows inwards toward the axis of rotation. As a result, they rarely form within 5° of the equator.[5] Tropical cyclones are typically between 100 and 2,000 km (62 and 1,243 mi) in diameter.

Tropical refers to the geographical origin of these systems, which form almost exclusively over tropical seas. Cyclone refers to their cyclonic nature, with wind blowing counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. The opposite direction of circulation is due to the Coriolis effect.

In addition to strong winds and rain, tropical cyclones are capable of generating high waves, damaging storm surge, and tornadoes. They typically weaken rapidly over land where they are cut off from their primary energy source. For this reason, coastal regions are particularly vulnerable to damage from a tropical cyclone as compared to inland regions. Heavy rains, however, can cause significant flooding inland, and storm surges can produce extensive coastal flooding up to 40 kilometres (25 mi) from the coastline. Though their effects on human populations are often devastating, tropical cyclones can relieve drought conditions. They also carry heat energy away from the tropics and transport it toward temperate latitudes, which may play an important role in modulating regional and global climate.

Physical structure

Tropical cyclones are areas of relatively low pressure in the troposphere, with the largest pressure perturbations occurring at low altitudes near the surface. On Earth, the pressures recorded at the centers of tropical cyclones are among the lowest ever observed at sea level.[6] The environment near the center of tropical cyclones is warmer than the surroundings at all altitudes, thus they are characterized as "warm core" systems.[7]

Wind field

The near-surface wind field of a tropical cyclone is characterized by air rotating rapidly around a center of circulation while also flowing radially inwards. At the outer edge of the storm, air may be nearly calm; however, due to the Earth's rotation, the air has non-zero absolute angular momentum. As air flows radially inward, it begins to rotate cyclonically (counter-clockwise in the Northern Hemisphere, and clockwise in the Southern Hemisphere) in order to conserve angular momentum. At an inner radius, air begins to ascend to the top of the troposphere. This radius is typically coincident with the inner radius of the eyewall, and has the strongest near-surface winds of the storm; consequently, it is known as the radius of maximum winds.[8] Once aloft, air flows away from the storm's center, producing a shield of cirrus clouds.[9]

The previously mentioned processes result in a wind field that is nearly axisymmetric: Wind speeds are low at the center, increase rapidly moving outwards to the radius of maximum winds, and then decay more gradually with radius to large radii. However, the wind field often exhibits additional spatial and temporal variability due to the effects of localized processes, such as thunderstorm activity and horizontal flow instabilities. In the vertical direction, winds are strongest near the surface and decay with height within the troposphere.[10]

Eye and center

At the center of a mature tropical cyclone, air sinks rather than rises. For a sufficiently strong storm, air may sink over a layer deep enough to suppress cloud formation, thereby creating a clear "eye". Weather in the eye is normally calm and free of clouds, although the sea may be extremely violent.[11] The eye is normally circular in shape, and is typically 30–65 km (19–40 mi) in diameter, though eyes as small as 3 km (1.9 mi) and as large as 370 km (230 mi) have been observed.[12][13]

The cloudy outer edge of the eye is called the "eyewall". The eyewall typically expands outward with height, resembling an arena football stadium; this phenomenon is sometimes referred to as the stadium effect.[13] The eyewall is where the greatest wind speeds are found, air rises most rapidly, clouds reach to their highest altitude, and precipitation is the heaviest. The heaviest wind damage occurs where a tropical cyclone's eyewall passes over land.[11]

In a weaker storm, the eye may be obscured by the central dense overcast, which is the upper-level cirrus shield that is associated with a concentrated area of strong thunderstorm activity near the center of a tropical cyclone.[14]

The eyewall may vary over time in the form of eyewall replacement cycles, particularly in intense tropical cyclones. Outer rainbands can organize into an outer ring of thunderstorms that slowly moves inward, which is believed to rob the primary eyewall of moisture and angular momentum. When the primary eyewall weakens, the tropical cyclone weakens temporarily. The outer eyewall eventually replaces the primary one at the end of the cycle, at which time the storm may return to its original intensity.[15]

Size

There are a variety of metrics commonly used to measure storm size. The most common metrics include the radius of maximum wind, the radius of 34-knot wind (i.e. gale force), the radius of outermost closed isobar (ROCI), and the radius of vanishing wind.[17][18] An additional metric is the radius at which the cyclone's relative vorticity field decreases to 1×10−5 s−1.[13]

On Earth, tropical cyclones span a large range of sizes, from 100–2,000 kilometres (62–1,243 mi) as measured by the radius of vanishing wind. They are largest on average in the northwest Pacific Ocean basin and smallest in the northeastern Pacific Ocean basin.[19] If the radius of outermost closed isobar is less than two degrees of latitude (222 km (138 mi)), then the cyclone is "very small" or a "midget". A radius of 3–6 latitude degrees (333–670 km (207–416 mi)) is considered "average sized". "Very large" tropical cyclones have a radius of greater than 8 degrees (888 km (552 mi)).[16] Observations indicate that size is only weakly correlated to variables such as storm intensity (i.e. maximum wind speed), radius of maximum wind, latitude, and maximum potential intensity.[18][19]

Size plays an important role in modulating damage caused by a storm. All else equal, a larger storm will impact a larger area for a longer period of time. Additionally, a larger near-surface wind field can generate higher storm surge due to the combination of longer wind fetch, longer duration, and enhanced wave setup.[20]

The upper circulation of strong hurricanes extends into the tropopause of the atmosphere, which at low latitudes is 15,000–18,000 metres (50,000–60,000 ft).[21]

Physics and energetics

The three-dimensional wind field in a tropical cyclone can be separated into two components: a "primary circulation" and a "secondary circulation". The primary circulation is the rotational part of the flow; it is purely circular. The secondary circulation is the overturning (in-up-out-down) part of the flow; it is in the radial and vertical directions. The primary circulation is larger in magnitude, dominating the surface wind field, and is responsible for the majority of the damage a storm causes, while the secondary circulation is slower but governs the energetics of the storm.

Secondary circulation: a Carnot heat engine

A tropical cyclone's primary energy source is heat from the evaporation of water from the ocean surface, which ultimately recondenses into clouds and rain when the warm moist air rises and cools to saturation. The energetics of the system may be idealized as an atmospheric Carnot heat engine.[23] First, inflowing air near the surface acquires heat primarily via evaporation of water (i.e. latent heat) at the temperature of the warm ocean surface (during evaporation, the ocean cools and the air warms). Second, the warmed air rises and cools within the eyewall while conserving total heat content (latent heat is simply converted to sensible heat during condensation). Third, air outflows and loses heat via infrared radiation to space at the temperature of the cold tropopause. Finally, air subsides and warms at the outer edge of the storm while conserving total heat content. The first and third legs are nearly isothermal, while the second and fourth legs are nearly isentropic. This in-up-out-down overturning flow is known as the secondary circulation. The Carnot perspective provides an upper bound on the maximum wind speed that a storm can attain.

Scientists estimate that a tropical cyclone releases heat energy at the rate of 50 to 200 exajoules (1018 J) per day,[24] equivalent to about 1 PW (1015 watt). This rate of energy release is equivalent to 70 times the world energy consumption of humans and 200 times the worldwide electrical generating capacity, or to exploding a 10-megaton nuclear bomb every 20 minutes.[24][25]

Formation

Worldwide, tropical cyclone activity peaks in late summer, when the difference between temperatures aloft and sea surface temperatures is the greatest. However, each particular basin has its own seasonal patterns. On a worldwide scale, May is the least active month, while September is the most active month. November is the only month in which all the tropical cyclone basins are active.[46]

 

Factors

Waves in the trade winds in the Atlantic Ocean—areas of converging winds that move along the same track as the prevailing wind—create instabilities in the atmosphere that may lead to the formation of hurricanes.

The formation of tropical cyclones is the topic of extensive ongoing research and is still not fully understood.[52] While six factors appear to be generally necessary, tropical cyclones may occasionally form without meeting all of the following conditions. In most situations, water temperatures of at least 26.5 °C (79.7 °F) are needed down to a depth of at least 50 m (160 ft);[53] waters of this temperature cause the overlying atmosphere to be unstable enough to sustain convection and thunderstorms.[54] Another factor is rapid cooling with height, which allows the release of the heat of condensation that powers a tropical cyclone.[53] High humidity is needed, especially in the lower-to-mid troposphere; when there is a great deal of moisture in the atmosphere, conditions are more favorable for disturbances to develop.[53] Low amounts of wind shear are needed, as high shear is disruptive to the storm's circulation.[53] Tropical cyclones generally need to form more than 555 km (345 mi) or five degrees of latitude away from the equator, allowing the Coriolis effect to deflect winds blowing towards the low pressure center and creating a circulation.[53] Lastly, a formative tropical cyclone needs a preexisting system of disturbed weather. Tropical cyclones will not form spontaneously.[53] Low-latitude and low-level westerly wind bursts associated with the Madden-Julian oscillation can create favorable conditions for tropical cyclo-genesis by initiating tropical disturbances.[55]

Locations

Most tropical cyclones form in a worldwide band of thunderstorm activity near the equator, referred to as the Intertropical Front (ITF), the Intertropical Convergence Zone (ITCZ), or the monsoon trough.[56][57][58] Another important source of atmospheric instability is found in tropical waves, which contribute to the development of about 85% of intense tropical cyclones in the Atlantic Ocean and become most of the tropical cyclones in the Eastern Pacific.[59][60][61] The majority forms between 10 and 30 degrees of latitude away of the equator,[62] and 87% forms no farther away than 20 degrees north or south.[63][64] Because the Coriolis effect initiates and maintains their rotation, tropical cyclones rarely form or move within 5 degrees of the equator, where the effect is weakest.[63] However, it is still possible for tropical systems to form within this boundary as Tropical Storm Vamei and Cyclone Agni did in 2001 and 2004, respectively.[65][66]

Movement

The movement of a tropical cyclone (i.e. its "track") is typically approximated as the sum of two terms: "steering" by the background environmental wind and "beta drift".[67]

Environmental steering

Environmental steering is the dominant term. Conceptually, it represents the movement of the storm with the background environment, akin to "leaves carried along by a stream".[68] Physically, the flow field in the vicinity of a tropical cyclone may be decomposed into two parts: the flow associated with the storm itself, and the large-scale background flow of the environment in which the storm is embedded. In this way, tropical cyclone motion may be represented to first-order simply as the advection of the storm by the local environmental flow. This environmental flow is termed the "steering flow".

Climatologically, tropical cyclones are steered primarily westward by the east-to-west trade winds on the equatorial side of the subtropical ridge—a persistent high-pressure area over the world's subtropical oceans.[68] In the tropical North Atlantic and Northeast Pacific oceans, the trade winds steer tropical easterly waves westward from the African coast toward the Caribbean Sea, North America, and ultimately into the central Pacific Ocean before the waves dampen out.[60] These waves are the precursors to many tropical cyclones within this region.[59] In contrast, in the Indian Ocean and Western Pacific in both hemispheres, tropical cyclogenesis is influenced less by tropical easterly waves and more by the seasonal movement of the Inter-tropical Convergence Zone and the monsoon trough.[69]Additionally, tropical cyclone motion can be influenced by transient weather systems, such as extratropical cyclones.

Beta drift

In addition to environmental steering, a tropical cyclone will tend to drift slowly poleward and westward, a motion known as "beta drift". This motion is due to the superposition of a vortex, such as a tropical cyclone, onto an environment in which the Coriolis force varies with latitude, such as on a sphere or beta plane. It is induced indirectly by the storm itself, the result of a feedback between the cyclonic flow of the storm and its environment.

Physically, the cyclonic circulation of the storm advects environmental air poleward east of center and equatorial west of center. Because air must conserve its angular momentum, this flow configuration induces a cyclonic gyre equatorward and westward of the storm center and an anticyclonic gyre poleward and eastward of the storm center. The combined flow of these gyres acts to advect the storm slowly poleward and westward. This effect occurs even if there is zero environmental flow.

Multiple storm interaction

A third component of motion that occurs relatively infrequently involves the interaction of multiple tropical cyclones. When two cyclones approach one another, their centers will begin orbiting cyclonically about a point between the two systems. Depending on their separation distance and strength, the two vortices may simply orbit around one another or else may spiral into the center point and merge. When the two vortices are of unequal size, the larger vortex will tend to dominate the interaction, and the smaller vortex will orbit around it. This phenomenon is called the Fujiwhara effect, after Sakuhei Fujiwhara.[70]

Interaction with the mid-latitude westerlies

Though a tropical cyclone typically moves from east to west in the tropics, its track may shift poleward and eastward either as it moves west of the subtropical ridge axis or else if it interacts with the mid-latitude flow, such as the jet stream or an extratropical cyclone. This motion, termed "recurvature", commonly occurs near the western edge of the major ocean basins, where the jet stream typically has a poleward component and extratropical cyclones are common.[71] An example of tropical cyclone recurvature was Typhoon Ioke in 2006.[72]

Landfall

The landfall of a tropical cyclone occurs when a storm's surface center, moves over a coastline.[8] Storm conditions may be experienced on the coast and inland hours before landfall; in fact, a tropical cyclone can launch its strongest winds over land, yet not make landfall. NOAA uses the term "direct hit" to describe when a location (on the left side of the eye) falls within the radius of maximum winds (or twice that radius if on the right side), whether or not the hurricane's eye made landfall.[8]

Dissipation Factors

A tropical cyclone can cease to have tropical characteristics in several different ways. One such way is if it moves over land, thus depriving it of the warm water it needs to power itself, quickly losing strength.[73] Most strong storms lose their strength very rapidly after landfall and become disorganized areas of low pressure within a day or two, or evolve into extratropical cyclones. There is a chance a tropical cyclone could regenerate if it managed to get back over open warm water, such as with Hurricane Ivan. If it remains over mountains for even a short time, weakening will accelerate.[74] Many storm fatalities occur in mountainous terrain, when diminishing cyclones unleash their moisture as torrential rainfall.[75] This may lead to deadly floods and mudslides, as was the case with Hurricane Mitch in 1998.[76] Without warm surface water, the storm cannot survive.[77]

A tropical cyclone can dissipate when it moves over waters significantly below 26.5 °C (79.7 °F). This will cause the storm to lose its tropical characteristics, such as a warm core with thunderstorms near the center, and become a remnant low-pressure area. These remnant systems may persist for up to several days before losing their identity. This dissipation mechanism is most common in the eastern North Pacific.[78] Weakening or dissipation can occur if it experiences vertical wind shear, causing the convection and heat engine to move away from the center; this normally ceases development of a tropical cyclone.[79] In addition, its interaction with the main belt of the Westerlies, by means of merging with a nearby frontal zone, can cause tropical cyclones to evolve into extratropical cyclones. This transition can take 1–3 days.[80] Even after a tropical cyclone is said to be extratropical or dissipated, it can still have tropical storm force (or occasionally hurricane/typhoon force) winds and drop several inches of rainfall. In the Pacific Ocean and Atlantic Ocean, such tropical-derived cyclones of higher latitudes can be violent and may occasionally remain at hurricane or typhoon-force wind speeds when they reach the west coast of North America. These phenomena can also affect Europe, where they are known as European windstormsHurricane Iris's extratropical remnants are an example of such a windstorm from 1995.[81] A cyclone can also merge with another area of low pressure, becoming a larger area of low pressure. This can strengthen the resultant system, although it may no longer be a tropical cyclone.[79] Studies in the 2000s have given rise to the hypothesis that large amounts of dust reduce the strength of tropical cyclones.[82]

Artificial dissipation

In the 1960s and 1970s, the United States government attempted to weaken hurricanes through Project Stormfury by seeding selected storms with silver iodide. It was thought that the seeding would cause supercooled water in the outer rainbands to freeze, causing the inner eyewall to collapse and thus reducing the winds.[83] The winds of Hurricane Debbie—a hurricane seeded in Project Stormfury—dropped as much as 31%, but Debbie regained its strength after each of two seeding forays.[84] In an earlier episode in 1947, disaster struck when a hurricane east of Jacksonville, Florida promptly changed its course after being seeded, and smashed into Savannah, Georgia.[85] Because there was so much uncertainty about the behavior of these storms, the federal government would not approve seeding operations unless the hurricane had a less than 10% chance of making landfall within 48 hours, greatly reducing the number of possible test storms. The project was dropped after it was discovered that eyewall replacement cycles occur naturally in strong hurricanes, casting doubt on the result of the earlier attempts. Today, it is known that silver iodide seeding is not likely to have an effect because the amount of supercooled water in the rainbands of a tropical cyclone is too low.[86]

Other approaches have been suggested over time, including cooling the water under a tropical cyclone by towing icebergs into the tropical oceans.[87] Other ideas range from covering the ocean in a substance that inhibits evaporation,[88] dropping large quantities of ice into the eye at very early stages of development (so that the latent heat is absorbed by the ice, instead of being converted to kinetic energy that would feed the positive feedback loop),[87] or blasting the cyclone apart with nuclear weapons.[89] Project Cirrus even involved throwing dry ice on a cyclone.[90] These approaches all suffer from one flaw above many others: tropical cyclones are simply too large and short-lived for any of the weakening techniques to be practical.[91]

Effects

Tropical cyclones out at sea cause large waves, heavy rainflood and high winds, disrupting international shipping and, at times, causing shipwrecks.[92]Tropical cyclones stir up water, leaving a cool wake behind them, which causes the region to be less favorable for subsequent tropical cyclones.[35] On land, strong winds can damage or destroy vehicles, buildings, bridges, and other outside objects, turning loose debris into deadly flying projectiles. The storm surge, or the increase in sea level due to the cyclone, is typically the worst effect from landfalling tropical cyclones, historically resulting in 90% of tropical cyclone deaths.[93] The broad rotation of a landfalling tropical cyclone, and vertical wind shear at its periphery, spawns tornadoes. Tornadoes can also be spawned as a result of eyewall mesovortices, which persist until landfall.[94]

Over the past two centuries, tropical cyclones have been responsible for the deaths of about 1.9 million people worldwide. Large areas of standing water caused by flooding lead to infection, as well as contributing to mosquito-borne illnesses. Crowded evacuees in shelters increase the risk of disease propagation.[93] Tropical cyclones significantly interrupt infrastructure, leading to power outages, bridge destruction, and the hampering of reconstruction efforts.[93][95] On average, the Gulf and east coasts of the United States suffer approximately US $5 billion (1995 US $) in cyclone damage every year. The majority (83%) of tropical cyclone damage is caused by severe hurricanes, category 3 or greater. However, category 3 or greater hurricanes only account for about one-fifth of cyclones that make landfall every year.[96]

Although cyclones take an enormous toll in lives and personal property, they may be important factors in the precipitation regimes of places they impact, as they may bring much-needed precipitation to otherwise dry regions.[97] Tropical cyclones also help maintain the global heat balance by moving warm, moist tropical air to the middle latitudes and polar regions,[98] and by regulating the thermohaline circulation through upwelling.[99] The storm surge and winds of hurricanes may be destructive to human-made structures, but they also stir up the waters of coastal estuaries, which are typically important fish breeding locales. Tropical cyclone destruction spurs redevelopment, greatly increasing local property values.[100]

When hurricanes surge upon shore from the ocean, salt is introduced to many freshwater areas and raises the salinity levels too high for some habitats to withstand. Some are able to cope with the salt and recycle it back into the ocean, but others can not release the extra surface water quickly enough or do not have a large enough freshwater source to replace it. Because of this, some species of plants and vegetation die due to the excess salt.[101] In addition, hurricanes can carry toxins and acids onto shore when they make landfall. The flood water can pick up the toxins from different spills and contaminate the land that it passes over. The toxins are very harmful to the people and animals in the area, as well as the environment around them. The flooding water can also spark many dangerous oil spills.[102]

Observation and forecasting Observation

Intense tropical cyclones pose a particular observation challenge, as they are a dangerous oceanic phenomenon, and weather stations, being relatively sparse, are rarely available on the site of the storm itself. In general, surface observations are available only if the storm is passing over an island or a coastal area, or if there is a nearby ship. Real-time measurements are usually taken in the periphery of the cyclone, where conditions are less catastrophic and its true strength cannot be evaluated. For this reason, there are teams of meteorologists that move into the path of tropical cyclones to help evaluate their strength at the point of landfall.[103]

Tropical cyclones far from land are tracked by weather satellites capturing visible and infrared images from space, usually at half-hour to quarter-hour intervals. As a storm approaches land, it can be observed by land-based Doppler weather radar. Radar plays a crucial role around landfall by showing a storm's location and intensity every several minutes.[104]

In situ measurements, in real-time, can be taken by sending specially equipped reconnaissance flights into the cyclone. In the Atlantic basin, these flights are regularly flown by United States government hurricane hunters.[105] The aircraft used are WC-130 Hercules and WP-3D Orions, both four-engine turboprop cargo aircraft. These aircraft fly directly into the cyclone and take direct and remote-sensing measurements. The aircraft also launch GPS dropsondes inside the cyclone. These sondes measure temperature, humidity, pressure, and especially winds between flight level and the ocean's surface. A new era in hurricane observation began when a remotely piloted Aerosonde, a small drone aircraft, was flown through Tropical Storm Ophelia as it passed Virginia's Eastern Shore during the 2005 hurricane season. A similar mission was also completed successfully in the western Pacific Ocean. This demonstrated a new way to probe the storms at low altitudes that human pilots seldom dare.[106]

 

A general decrease in error trends in tropical cyclone path prediction is evident since the 1970s

Forecasting

Because of the forces that affect tropical cyclone tracks, accurate track predictions depend on determining the position and strength of high- and low-pressure areas, and predicting how those areas will change during the life of a tropical system. The deep layer mean flow, or average wind through the depth of the troposphere, is considered the best tool in determining track direction and speed. If storms are significantly sheared, use of wind speed measurements at a lower altitude, such as at the 70 kPa pressure surface (3,000 metres or 9,800 feet above sea level) will produce better predictions. Tropical forecasters also consider smoothing out short-term wobbles of the storm as it allows them to determine a more accurate long-term trajectory.[107] High-speed computers and sophisticated simulation software allow forecasters to produce computer models that predict tropical cyclone tracks based on the future position and strength of high- and low-pressure systems. Combining forecast models with increased understanding of the forces that act on tropical cyclones, as well as with a wealth of data from Earth-orbiting satellites and other sensors, scientists have increased the accuracy of track forecasts over recent decades.[108] However, scientists are not as skillful at predicting the intensity of tropical cyclones.[109] The lack of improvement in intensity forecasting is attributed to the complexity of tropical systems and an incomplete understanding of factors that affect their development.

Intensity classifications

Tropical cyclones are classified into three main groups, based on intensity: tropical depressions, tropical storms, and a third group of more intense storms, whose name depends on the region. For example, if a tropical storm in the Northwestern Pacific reaches hurricane-strength winds on the Beaufort scale, it is referred to as a typhoon; if a tropical storm passes the same benchmark in the Northeast Pacific Basin, or in the North Atlantic, it is called a hurricane.[8] Neither "hurricane" nor "typhoon" is used in either the Southern Hemisphere or the Indian Ocean. In these basins, storms of a tropical nature are referred to as either tropical cyclones, severe tropical cyclones or very intense tropical cyclones.

As indicated in the table below, each basin uses a separate system of terminology, which can make comparisons between different basins difficult. In the Pacific Ocean, hurricanes from the Central North Pacific sometimes cross the 180th meridian into the Northwest Pacific, becoming typhoons (such as Hurricane/Typhoon Ioke in 2006); on rare occasions, the reverse will occur.[110] It should also be noted that typhoons with 1-minute sustained winds greater than 67 metres per second (m/s), over 150 miles per hour (240 km/h), are called Super Typhoons by the Joint Typhoon Warning Center.[111]

Tropical depression

"Tropical Depression" redirects here. For the Filipino reggae band, see Tropical Depression (band). For the EP by Elephant Micah, see Tropical Depression (EP).

A tropical depression or tropical low is a tropical disturbance, that has a clearly defined surface circulation, which has maximum sustained winds of less than 34 kn (39 mph; 63 km/h).[40] Within the Southern Hemisphere, the depression can have gale force or stronger winds in one or more quadrants, but not near the centre.[40]

Tropical storm

A tropical storm is an organized system of strong thunderstorms with a defined surface circulation and maximum sustained winds between 34 knots (63 km/h) and 64 knots (119 km/h). At this point, the distinctive cyclonic shape starts to develop, although an eye is not usually present. Government weather services first assign names to systems that reach this intensity (thus the term named storm).[112] Although tropical storms are less intense than a hurricane they can produce significant damage. The shear force of winds can blow off shingles, and air borne objects can cause damage to power lines, roofing and siding. More dangerous is the heavy rain fall causing inland flooding.[113]

Hurricane or typhoon

A hurricane or typhoon (sometimes simply referred to as a tropical cyclone, as opposed to a depression or storm) is a system with sustained winds of at least 34 metres per second (66 kn) or 74 miles per hour (119 km/h).[112] A cyclone of this intensity tends to develop an eye, an area of relative calm (and lowest atmospheric pressure) at the center of circulation. The eye is often visible in satellite images as a small, circular, cloud-free spot. Surrounding the eye is the eyewall, an area about 16 kilometres (9.9 mi) to 80 kilometres (50 mi) wide in which the strongest thunderstorms and winds circulate around the storm's center. Maximum sustained winds in the strongest tropical cyclones have been estimated at about 95 metres per second (185 kn) or 346 kilometres per hour (215 mph).[114]

Click here for the full article on Wikipedia

bottom of page